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Novel tools are needed for efficient analysis and visualization of the massive data sets associated with metabolomics. Here,
we describe a batch-learning self-organizing map (BL-SOM) for metabolome informatics that makes the learning process and
resulting map independent of the order of data input. This approach was successfully used in analyzing and organizing the
metabolome data for Arabidopsis thaliana cells cultured under salt stress. Our 6 × 4 matrix presented patterns of metabolite
levels at different time periods. A negative correlation was found between the levels of amino acids and metabolites related
to glycolysis metabolism in response to this stress. Therefore, BL-SOM could be an excellent tool for clustering and visualizing
high dimensional, complex metabolome data in a single map.
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Metabolomics is a comprehensive analysis during which
thorough metabolite profiling is performed. This approach
has emerged as a functional genomics methodology that
contributes to our understanding of the complex molecular
interactions in biological systems (Fiehn, 2002). Its final out-
put is an exhaustive profile of all the metabolites present in
a target organism. Unfortunately, this technique is still in an
infant stage, and many of the necessary tools are not yet
available (Sumner et al., 2003). The great diversity of chem-
ical properties and the wide ranges of metabolite concentra-
tions pose a significant challenge because these methods
must be robust and reproducible so that samples can be
reliably compared. In addition, metabolomics has not yet
been widely implemented primarily because an efficient
method is lacking for cataloging data into useful and func-
tionally meaningful groups. Multivariate analysis with an
appropriate algorithm could be performed depending on
data structure and the mining intention. Principle compo-
nent analysis (PCA) and hierarchical cluster analysis (HCA)
are often conducted to systematically group related patterns
of metabolite levels. Although these methods can effectively
cluster genes with similar profiles, there is no direct relation-
ship between different branches (Fiehn et al., 2000; Roess-
ner et al., 2001; Sumner et al., 2003; Tikunov et al., 2005). 

Kohonen’s Self-Organizing Map (SOM) is an unsupervised
neural network algorithm that has successfully been used to
analyze very large data files in various fields, e.g., for pro-
cess-monitoring and visualization, exploratory data analysis,
and simulation of brain-like feature maps (Kohonen, 1982,
1990; Kohonen et al., 1996). However, the original SOM
algorithm requires a long time for its calculation, and may
produce different clustering results in its topology depending
on the order of data input. This original SOM had now been
improved as a batch-learning SOM (BL-SOM). The initial
weight vectors are set by PCA and the learning process is

designed to be independent of the order of input of vectors;
hence, the result is reproducible (Kanaya et al., 2001; Abe
et al., 2003). BL-SOM can be done in the laboratory using a
personal computer because the algorithm does not require
high CPU (central processing unit) power (Fukusaki and
Kobayashi, 2005). Although it has been used in “omics” sci-
ences, including genomics and transcriptomics (Kanaya et
al., 2001; Abe et al., 2003, 2006; Hirai et al., 2004), only a
few examples for BL-SOM analysis of metabolome data are
available (Hirai et al., 2004; Kim et al., 2007). We previ-
ously applied BL-SOM to analyze the fold-change database
for the amounts of metabolites obtained via time-course
sampling of Arabidopsis thaliana cells after salt-stress treat-
ment (Kim et al., 2007).

Here, we have evaluated the clustering and visualizing
power of BL-SOM to assess the metabolite level data gener-
ated from an earlier time-course design. Arabidopsis T87
cells were obtained from the RIKEN Bio Resource Center
(Tsukuba, Japan). They were grown in a modified liquid LS
medium (30 mL) in a 100 mL flask at 23°C and under con-
tinuous light [photosynthetic photon flux density (PPFD) of
55 µmol m−2 s−1]. After 3 d, the cells were treated with 100
mM NaCl, then sampled for analysis after 0.5, 1, 2, 4, 12,
24, 48, and 72 h. Control cells also were harvested by filtra-
tion, immediately ground in liquid nitrogen, and stored at –
80°C. All metabolites were extracted, separated, identified,
and measured via LC/MS/MS, LC/MS, and GC/MS analysis
according to the procedures previously reported by our
group (Kim et al., 2007). 

Using the BL-SOM algorithm, we examined the data from
47 metabolites and calculated the ratios of S-adenosyl-L-
methionine to S-adenosyl-L-homocysteine (methylation index)
at eight time points during this salt-stress treatment (Table 1).
Mean values for metabolite levels were taken from three
replicates. This algorithm organized the data into a two-
dimensional matrix by an iterative process that was based
on the relative similarity of the fold-change patterns of these
metabolites. Relative values for normalized metabolite levels
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were used, and the highest level attained by each over the
time-course was set to ‘1’. At the beginning, each neuron of
the SOM was assigned an initial weight vector defined by
PCA. These weight vectors (wij) were arranged into a two-
dimensional lattice denoted by i (=0, 1, …, I-1) and j (=0,
1, …, J-1), where I was set as ‘6’, J was defined by the near-
est integer greater than (σ2/σ1) × I, and σ1 and σ2 were the
standard deviations of the first and second principal compo-
nents, respectively. During the learning phase, the Euclidian
distance was calculated between one sample vector and all
the weight vectors of the map. Thus, the weight vectors for
the best matching neuron were moved toward the values of
the input vectors, such that the neurons represented a group
of similar accumulation profiles.

Here, BL-SOM rapidly and reliably clustered the metabo-
lites into groups with similar concentration patterns, and
which were metabolically related. Previously, we had per-
formed an analysis in order to cluster metabolites with simi-
lar level profiles in the same neuron into a 4 × 3 matrix
SOM, where the 24 metabolites were classified into 4
groups (Kim et al., 2007). In the present study, to produce
better separation of the different patterns, all metabolites
with similar level profiles were clustered within the same
neuron and/or the neighboring neuron into a 6 × 4 matrix
consisting of 22 neurons (Fig. 1). The number of metabolites

in individual neurons varied between 1 and 5. Neurons with
decreasing level profiles of metabolites appeared on the
upper side and metabolites that were accumulated during
the salt-stress treatment were located down and to the right.
Metabolites that had no remarkable changes clustered to
the lower-left side of the field. Except for Ser, Gly, Pro, Ala,
and Glu, all the amino acids were contained in the upper-
side neurons, while metabolites related to glycolysis metab-
olism clustered toward neurons on the lower-right side, sug-
gesting that the clustering achieved by BL-SOM can reliably
predict functional similarity (Fig. 2A, B). 

Changes in metabolite levels were either dramatic or sub-
tle. Those of the former kind were easily recognized,
whereas the more subtle changes required statistical pro-
cessing to determine whether they were significant. Line
graphs for each neuron provided profound evidence of cor-
relations between metabolite levels and the schemes that
could reconstruct metabolic networks from the time series
(Fig. 2A). For example, metabolite levels for the upper-right
clusters -- Phe, Lys, Tyr, Trp, and Cys – were suppressed at
the time point of 24 h before those of the neighboring clus-
ter that contained ethanolamine, citric acid, gluconic acid,
and the methylation index decreased. After that 24-h point,
the metabolite levels decreased for the upper-left clusters,
which included Val, Ile, Asn, Gln, and Leu, while those of

Figure 1. A 6 × 4 matrix for BL-SOM analysis on metabolomics. SOMs for metabolite data of differential response with respect to time series.
Neurons were arranged in two-dimensional lattice. Metabolite numbers clustered are shown in neurons. Metabolite clusters are on 22 neurons,
and comparative changes in metabolite levels are indicated by neuron colors: red (most increased), pink (increased), pale blue (decreased), and
blue (most decreased). 
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the lower-right clusters, e.g., α-ketoglutaric acid, succinic
acid, D-fructose, malic acid, and pyruvic acid, were accu-
mulated. Hence, it is most interesting that the metabolites
related to glycolysis and sucrose metabolism were dramati-
cally altered in conjunction with changes in amino acid con-
tent. Roessner et al. (2006) have reported that amino acid
biosynthesis in potato tubers is regulated by sucrose levels.
We also noted that levels of shikimic acid increased at 72 h,
while those of Tyr, Trp, and Phe declined. Shikimate is pro-
duced by condensation of phosphoenolpyruvate and eryth-
rose 4-phosphate, followed by several reactions. The
decrease in Tyr and Phe seen here could also be interpreted
as the degradation of those compounds. Evidence support-
ing this hypothesis includes the rise in fumaric acid, a break-
down product of aromatic amino acid catabolism.

Moreover, among the amino acids analyzed, only Ala was
increased at 72 h for T87 cell cultures in the presence of salt
(Table 1). Under such stress conditions, Ala is accumulated
as a storage form of pyruvate (Ben-Izhak Monselise et al.,
2003).

In summary, based on our analysis using BL-SOM, we can
suggest that a negative correlation exists between the
metabolites associated with glycolysis metabolism and those
amino acids that respond to salt stress. The clustering
achieved by BL-SOM represents functional similarity, which
reflects participation in a common or closely related path-
way. Therefore, we conclude that this BL-SOM approach for
cluster analysis could be applied for grouping similar pat-
terns of metabolite levels, and could also be used to infer
underlying biological mechanisms. 

Figure 2. Line graphs (A) and metabolite clusters (B) displayed on 22 neurons (Fig. 1) obtained by BL-SOM analysis. Highest level for each
metabolite in raw data (Table 1) was set to ‘1’, which gave relative levels for each time-course sample. X axis represents time (h) of sampling
and Y axis represents relative positioning of normalized metabolite levels on line graph (A). Comparative changes in metabolite levels are shown
in boxes.
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Table 1. Time-course change of metabolite levels in T87 cells treated with 100 mM NaCl. Data are normalized to the mean response
calculated for the control cells of each measured batch. (SAM, S-adenosyl-L-methionine; SAH, S-adenosyl-L-homocysteine). Values are mean
± SEs (n=3).

Metabolite 30 min 1 h 2 h 4 h 12 h 24 h 48 h 72 h

Pyruvate 1.19 ± 0.08 1.32 ± 0.27 0.86 ± 0.00 0.68 ± 0.14 0.54 ± 0.15 1.84 ± 0.47 3.23 ± 0.63 3.63 ± 0.07

Lactate 0.87 ± 0.00 1.26 ± 0.31 0.98 ± 0.01 0.67 ± 0.26 0.53 ± 0.41 4.94 ± 1.45 3.67 ± 0.69 12.75 ± 0.250

Phosphorate 1.29 ± 0.01 0.92 ± 0.10 0.95 ± 0.01 1.21 ± 0.13 1.19 ± 0.09 1.92 ± 0.07 0.96 ± 0.13 0.55 ± 0.00

n-Butylamine 1.09 ± 0.15 1.08 ± 0.12 1.07 ± 0.02 0.96 ± 0.11 0.95 ± 0.19 1.05± 0.04 1.03 ± 0.05 1.07 ± 0.16

Ethanolamine 1.31 ± 0.04 1.45 ± 0.31 1.18 ± 0.02 1.22 ± 0.14 0.52 ± 0.01 0.59 ± 0.03 0.31 ± 0.02 0.26 ± 0.02

Glycerol 1.61 ± 0.06 0.72 ± 0.24 0.68 ± 0.02 1.91 ± 0.04 1.42 ± 0.09 3.30 ± 0.21 0.90 ± 0.07 1.40 ± 0.04

Succinate 0.75 ± 0.01 1.08 ± 0.12 0.80 ± 0.02 0.55 ± 0.04 0.39 ± 0.05 0.21 ± 0.00 0.87 ± 0.07 1.62 ± 0.01

Glycerate 1.17 ± 0.05 0.82 ± 0.12 0.58 ± 0.00 0.97 ± 0.07 1.18 ± 0.07 1.60 ± 0.17 1.35 ± 0.30 0.70 ± 0.04

Fumarate 0.82 ± 0.03 0.92 ± 0.10 0.72 ± 0.02 0.70 ± 0.02 0.53 ± 0.01 0.23 ± 0.06 0.91 ± 0.14 2.30 ± 0.05

Cadaverine 1.06 ± 0.04 1.00 ± 0.05 1.07 ± 0.04 0.89 ± 0.03 0.92 ± 0.08 0.91 ± 0.06 1.08 ± 0.04 0.96 ± 0.01

Malate 0.79 ± 0.03 1.11 ± 0.15 0.87 ± 0.06 0.73 ± 0.01 0.62 ± 0.03 1.17 ± 0.38 0.82 ± 0.06 2.27 ± 0.05

4-Aminobutyrate 0.87 ± 0.00 1.26 ± 0.24 1.21 ± 0.00 0.87 ± 0.05 0.77 ± 0.04 1.01 ± 0.07 0.92 ± 0.06 1.70 ± 0.11

Cysteine 1.03 ± 0.08 1.50 ± 0.18 1.34 ± 0.15 0.97 ± 0.08 0.74 ± 0.11 0.27 ± 0.05 1.23 ± 0.25 0.78 ± 0.60

α-Ketoglutarate 1.17 ± 0.17 0.99 ± 0.26 0.90 ± 0.17 0.91 ± 0.29 0.84 ± 0.27 0.47 ± 0.05 1.88 ± 0.42 1.84 ± 0.03

Aconitate 1.50 ± 0.11 0.91 ± 0.21 1.00 ± 0.03 1.71 ± 0.40 0.95 ± 0.18 0.70 ± 0.14 0.37 ± 0.04 0.82 ± 0.14

Putrescine 0.60 ± 0.01 0.94 ± 0.06 0.82 ± 0.02 0.92 ± 0.14 0.87 ± 0.06 0.49 ± 0.02 0.80 ± 0.13 0.56 ± 0.01

Ribonate 1.01 ± 0.01 1.00 ± 0.08 0.92 ± 0.02 0.87 ± 0.03 0.83 ± 0.04 0.78 ± 0.08 0.84 ± 0.01 0.81 ± 0.02

Shikimate 0.71 ± 0.08 0.90 ± 0.19 0.60 ± 0.02 0.54 ± 0.03 0.53 ± 0.01 0.37 ± 0.06 0.76 ± 0.04 2.02 ± 0.14

Citrate 1.10 ± 0.10 1.15 ± 0.25 1.60 ± 0.15 1.24 ± 0.07 1.00 ± 0.05 0.34 ± 0.10 0.61 ± 0.07 0.76 ± 0.02

D-fructose 0.72 ± 0.02 1.05 ± 0.10 0.89 ± 0.01 0.64 ± 0.05 0.26 ± 0.02 0.62 ± 0.04 0.85 ± 0.15 1.59 ± 0.09

Glucose 0.97 ± 0.00 1.02 ± 0.02 1.02 ± 0.01 0.85 ± 0.04 0.85 ± 0.03 0.38 ± 0.03 0.63 ± 0.01 0.58 ± 0.01

Lysine 1.32 ± 0.02 1.74 ± 0.62 1.85 ± 0.01 1.28 ± 0.23 0.70 ± 0.07 0.26 ± 0.08 0.97 ± 0.04 0.25 ± 0.01

Tyrosine 1.81 ± 0.02 3.71 ± 0.47 3.64 ± 0.21 1.25 ± 0.30 0.76 ± 0.06 0.26 ± 0.05 0.84 ± 0.34 0.14 ± 0.03

Gluconate 0.95 ± 0.01 1.08 ± 0.08 1.00 ± 0.02 0.85 ± 0.05 0.70 ± 0.04 0.36 ± 0.03 0.51 ± 0.04 0.48 ± 0.02

Galactonate 1.07 ± 0.07 0.94 ± 0.05 0.95 ± 0.00 0.90 ± 0.02 0.78 ± 0.03 0.56 ± 0.03 0.75 ± 0.05 0.71 ± 0.05

Inositol 1.03 ± 0.00 0.88 ± 0.13 0.83 ± 0.01 0.88 ± 0.05 1.00 ± 0.03 2.37 ± 0.24 1.63 ± 0.08 1.60 ± 0.03

Urate 0.76 ± 0.01 1.52 ± 0.45 2.50 ± 0.10 0.74 ± 0.19 0.52 ± 0.10 0.78 ± 0.25 1.76 ± 0.16 1.46 ± 0.04

Sucrose 0.86 ± 0.01 1.10 ± 0.11 1.49 ± 0.06 0.89 ± 0.15 1.08 ± 0.11 0.53 ± 0.04 2.12 ± 0.22 10.03 ± 0.050

Trehalose 1.11 ± 0.08 0.96 ± 0.13 0.88 ± 0.04 0.75 ± 0.09 0.90 ± 0.10 0.73 ± 0.06 0.87 ± 0.13 1.42 ± 0.02

Aspartate 0.77 ± 0.55 0.74 ± 0.09 0.80 ± 0.06 1.14 ± 0.17 0.70 ± 0.02 0.53 ± 0.06 0.59 ± 0.08 0.38 ± 0.05

Asparagine 1.01 ± 0.11 0.97 ± 0.02 1.17 ± 0.11 0.95 ± 0.06 0.74 ± 0.08 1.00 ± 0.02 0.87 ± 0.03 0.46 ± 0.07

Serine 0.79 ± 0.02 0.82 ± 0.04 0.94 ± 0.12 0.90 ± 0.01 0.82 ± 0.01 0.82 ± 0.02 0.88 ± 0.04 0.80 ± 0.00

Glycine 0.91 ± 0.01 0.85 ± 0.02 0.96 ± 0.01 0.82 ± 0.03 0.78 ± 0.01 0.81 ± 0.04 0.97 ± 0.03 0.87 ± 0.04

Alanine 0.92 ± 0.04 0.86 ± 0.09 0.85 ± 0.03 0.91 ± 0.04 0.71 ± 0.00 1.31 ± 0.06 1.30 ± 0.03 1.38 ± 0.06

Glutamate 0.46 ± 0.02 0.55 ± 0.02 0.48 ± 0.02 0.71 ± 0.03 0.52 ± 0.04 0.69 ± 0.07 0.59 ± 0.05 0.61 ± 0.05

Glutamine 0.45 ± 0.03 0.63 ± 0.08 0.61 ± 0.04 0.73 ± 0.03 0.75 ± 0.03 0.72 ± 0.02 0.60 ± 0.04 0.37 ± 0.04

Threonine 0.90 ± 0.06 1.04 ± 0.04 1.08 ± 0.06 0.98 ± 0.01 0.89 ± 0.06 1.16 ± 0.03 1.01 ± 0.08 0.54 ± 0.03

Proline 0.96 ± 0.03 1.04 ± 0.02 0.93 ± 0.02 0.80 ± 0.01 0.95 ± 0.03 1.08 ± 0.01 0.97 ± 0.03 0.64 ± 0.04

Valine 0.81 ± 0.01 1.01 ± 0.06 1.01 ± 0.11 1.01 ± 0.04 0.85 ± 0.03 0.69 ± 0.01 0.70 ± 0.01 0.43 ± 0.05

Trptophan 1.31 ± 0.06 2.34 ± 0.09 2.18 ± 0.05 1.11 ± 0.04 1.01 ± 0.07 0.37 ± 0.02 0.45 ± 0.03 0.24 ± 0.03

Isoleucine 1.07 ± 0.04 1.21 ± 0.03 1.20 ± 0.14 1.12 ± 0.03 0.92 ± 0.04 0.85 ± 0.05 1.04 ± 0.04 0.16 ± 0.02

Leucine 1.11 ± 0.01 1.15 ± 0.03 1.22 ± 0.17 1.20 ± 0.00 0.89 ± 0.04 0.56 ± 0.03 0.72 ± 0.02 0.22 ± 0.02

phenylalanine 1.47 ± 0.06 1.88 ± 0.08 1.60 ± 0.01 1.31 ± 0.05 0.66 ± 0.03 0.29 ± 0.00 0.50 ± 0.01 0.61 ± 0.10

Formate 1.02 ± 0.02 0.92 ± 0.03 1.10 ± 0.03 1.09 ± 0.01 1.01 ± 0.01 1.08 ± 0.02 1.41 ± 0.01 1.29 ± 0.01

SAM 1.38 ± 0.04 1.82 ± 0.02 1.47 ± 0.04 1.39 ± 0.07 0.92 ± 0.01 1.08 ± 0.08 0.89 ± 0.01 0.60 ± 0.05

SAH 1.09 ± 0.06 0.96 ± 0.06 1.02 ± 0.07 0.85 ± 0.06 1.29 ± 0.05 1.65 ± 0.04 1.60 ± 0.10 1.53 ± 0.05

Methylation 1.25 ± 0.05 1.88 ± 0.03 1.45 ± 0.05 1.63 ± 0.06 0.71 ± 0.02 0.65 ± 0.05 0.56 ± 0.05 0.39 ± 0.05

Folate 0.93 ± 0.06 0.90 ± 0.01 0.88 ± 0.01 0.87 ± 0.00 0.94 ± 0.02 0.89 ± 0.02 0.94 ± 0.01 1.01 ± 0.03
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